

PUFAChain:

the value chain from microalgal diversity to PUFAs: technological, environmental and integrated sustainability assessments

Dr Guido Reinhardt (IFEU)

2nd European Workshop Life Cycle Analysis of Algal based Biofuels and Biomaterials Brussels, 24 April 2014

Who we are - What we do

IFEU - Institute for Energy and Environmental Research Heidelberg, since 1978

- Independent scientific research institute
- organised as a private non profit company with currently about 70 employees
- Research / consulting on environmental aspects of
 - Energy (including Renewable Energy)
 - Transport
 - Waste Management
 - Life Cycle Analyses
 - Environmental Impact Assessment
 - Renewable Resources
 - Environmental Education

20 plus years of experience

F + E-Vorhaben des Umweltbundesamtes Nr. 104 08 508/02

Endbericht

Energie- und CO₂-Bilanz von Rapsöl und Rapsölester im Vergleich zu Dieselkraftstoff

ifeu – Institut für Energie- und Umweltforschung Heidelberg Fachbereich "Verkehr und Umwel

Dezember 1991

First full life cycle balance on biodiesel in Europe

1991

What are PUFAs?

PolyUnsaturated FattyAcids omega-3 types

all-cis-9,12,15-octadecatrienoic acid or 18:3(n-3)

COOH

all-cis-

4,7,10,13,16,19-docosahexaenoic acid **(DHA)** or 22:6(n-3)

all-cis-

5,8,11,14,17-eicosapentaenoic acid **(EPA)** or 20:5(n-3)

What are PUFAs?

- Increasing significance of omega-3 polyunsaturated fatty acids
 - > maintaining heart health
 - > protective properties against cancer and birth defects
 - > may offset symptoms of diabetes, arthritis and even neurological diseases

What are PUFAs?

- Omega-3 fatty acids: *essential* fatty acids
 - > cannot be synthesized by the human body
 - > must be supplied in the diet

- Major health benefits through
 - > EPA and DHA
 - > mainly obtained from cold water fish

- Concentration of EPA/DHA in fish oil varies considerably, depending on
 - > location
 - > annual season
 - > availability of phytoplankton

Why are algae a promising source for PUFAs?

Microalgae:

- forming feed for other marine life
- identified as the generic source of VLC fatty acids
- can be cultivated
- → alternative and promising source for EPA and/or DHA
- Other marine oils always deliver a mixture of both acids
- Some algae strains provide different acids much more selectively
- → facilitates further isolation and purification of target products

Designed conditions of cultivation process

- → avoiding contaminants like PAH, heavy metals and other unwanted by-products
- → these have to be removed from oils obtained from wild and farmed fish

PUFAChain: Project Overview

Call	KBBE.2013.3.2-02: The CO ₂ algae biorefinery
Project title	PUFAChain – The Value Chain from Microalgae to PUFA
Grant Agreement No.	613303
Duration	48 months
Start	1 st November 2013
End	31 th October 2017
No. of participants	9 partners from 4 different countries
Total estimated costs	7,149,939.60 Euro
Total EU contribution	5,124,066.00 Euro

Project partners

WP1: Management

Communication Structure

Project Meetings Scientific Coordination (WP2)

Project Templates

Financial Management Administrative Management

> Project Helpdesk

WP 2: Specifications and Scientific Coordination

Scientific Coordination

REGULAR Projekt Meetings

Activity Monitoring & Quality Control

Database Processing

WP 2: Specifications and Scientific Coordination

Specifications

Provide suitable microalgal species

Determination of fatty acid distribution

Select and describe suitable strains

Definition of:

Cultivation conditions Harvesting conditions

Definition of:

Transportation and storaging conditions

Definition of:

Fatty acid pattern and relevant by-products

WP3: Biology

Selecting the appropriate from the microalgal diversity

• **SAG** (University of Goettingen, Germany): Broad diversity of model algal species, important: different isolates with different properties of the same species, novel still unexploited isolates

• **CCCryo** (Fraunhofer, Potsdam): Selection of cold-adapted algal species (novel isolates from Polar regions)

WP3: Biology

Task 1. Optimization of pre-selected algal strains

- pre-selection: ~ 150 strains with PUFAs EPA and DHA > 5% in lipid profiles (Lang et al. 2011) AND promising to reach high cell densities in photobioreactors
- growth experiments to optimize PUFA yield, high cell densities may compensate
 if PUFA yield still low

Task 2. Optimization of microalgae from Polar regions (Algal Crop Rotation principle)

Cold-adapted in winter (outdoor), mesophilic or thermophilic in summer (outdoor)

Task 3. Genetic characterization of potential production strains and cryopreservation

- Quality management (strain identification, detection of contamination) using DNA barcodes
- Genetically stable cryopreserved stock of test and production strains

WP4: Bioprocess Engineering

Biomass optimization at laboratory scale
•nutritive media, productivity,...

2015 Scale-up from 10 L to 10000 L

•Data collection at 2 m³ operation (harvesting using Mahle membranes)

•Expansion project from 2 m³ to 10 m³

Biomass supply for processing

•Data collection at 10 m³ operation

Biomass pre-processing

 Optimizing pre-processing before extraction Inoculum

Laboratory tests set-up

Scale-up 2 m³

Project

Membrane set-up

2017

2016

WP5: Industrial Production

WP6: Downstream

WP7: Production Formulation

Characterization of crude algal oil (e.g. ratio neutral and polar lipids; free fatty acids)

Evaluation of the most promising refining and separation technology

- Chemical or
- Biocatalyzed esterification/hydrolysis

Preparation of various esters from DHA and EPA

Guido

Reinhardt

WP8: Demonstration

<u>Demonstration</u>
Algae cultivation and processing

<u>Demonstration</u> Production of crude algae oil

<u>Demonstration</u>
Isolation, purification and further modification of PUFAs

WP9: Sustainability

WP 10: Dissemination

Agenda

- PUFAChain: an overview
- → LCA: PUFAChain specific highlights
 - LCA and LC-EIA in PUFAChain
 - Quo vadis: sustainability assessment
 - Conclusions and recommendations

Life cycle comparison

PUFA: life cycle comparisons

Details: process chain

Results may differ significantly depending on co-product use

Guido

Reinhardt

Co-product handling in LCA

Conclusion I

→ For the sustainability assessment of algae based products, the complete life cycle comparisons should be investigated by consideration of the full basket of commodities ("system expansion" instead of "allocation").

← Advantages Disadvantages → **Energy savings**

Algae based bio-product's scenario I:

- Low production rate
- Low processing efficiency / high energy input
- Low amount of high value added products
- High amount of low value added products

Source: IFEU 2014

24th April 2014

Source: IFEU 2014

Energy savings

Algae based bio-product's scenario II:

Closed production units

Guido

Reinhardt

Typical processing efficiency

Source: IFEU 2014

Guido 24th April 2014 Reinhardt

Conclusion II and III

- Not all bio-products from algae such as bio-energy, bio-chemicals or bio-nutrients are associated with environmental benefits − just because they are "bio".
- There is a high potential far above average for algae based products being environmental friendly.

Agenda

- PUFAChain: an overview
- LCA: PUFAChain specific highlights
- → LCA and LC-EIA in PUFAChain
 - Quo vadis: sustainability assessment
 - Conclusions and recommendations

Guido

Reinhardt

PUFA: life cycle comparisons

Environmental assessment

Methodologies

- Life cycle assessment (LCA)
- Life cycle environmental impact assessment (LC-EIA)

LCA	LC-EIA
→ Global impacts	→ Site-specific impacts

Environmental assessment

Compartments of the environment

Environmental assessment

LC-EIA: Life cycle environmental impact assessment

Source: IUS 2013 & IFEU 2014

Results of an LC-EIA (example: comparisons)

	Perennia	l crops		Residues			
Feedstock	Arundo donax	Sugar cane	Rapeseed	Sorghum	Sugar beet	Cereal	Cereal straw
Reference scenario Type of risk	non rsl	cerr.	rsl	rsl	rsl	rsl	conv. use
Soil erosion	В	С	С	С	Е	С	С
Soil compaction	Α	D	С	С	Е	С	С
Soil organic matter	В	Е	D	D	Е	D	D
Soil chemistry / fertiliser	С	D	D	D	Е	D	D
Nutrient leaching, Eutrophication	В	D	D	D	D	D	D
Water demand	D	D	С	D	Е	С	С
Weed control / pesticides	В	Е	Е	Е	Е	E	Е
Loss of habitat / species diversity	С	Е	С	D	D	D	D
Loss of landscape elements	С	С	С	С	С	С	С

Impact category: A = minimum impact; E = maximum impact

non rsl: non-rotational fallow <u>set-aside</u> land, no cropping; **cer.**: cerrado (topical savannah);

rsl: rotational <u>set-aside</u> fallow land, no cropping; **conv. use**: conventional use

Source: IUS 2013

Results of an LC-EIA (example: scenarios)

	BIOLYFE scenarios				Alternatives to BIOLYFE					
				Marginal				Cane	Rape	Maize
		Fibre	Wheat	land	BTL	Wheat	Beet	ethanol	seed	bio-
	Arundo	sorghum	straw	(Arundo)	(Arundo)	ethanol	ethanol	(Brazil)	biodiesel	methane
Environment										
Water		_	0	_		0	_	_	_	_
Soil	0	_	0		0	_		0		
Fauna	0	1	0		0	_	_	_	_	_
Flora	_	-	0		_	_		_	_	
Landscape	0	0	0	0	0	0	0	_	0	0

Ranking by 5 categories: ++

++ + 0 - --

Source: IUS & IFEU 2013

Results of an LC-EIA (example: scenarios)

→ Quod erat demonstrandum:

LC-EIA (Life cycle environmental impact assessment) ...

... exists

... works well

... is applicable

... can supplement LCA

Ranking by 5 categories: ++ + 0 - --

Source: IUS & IFEU 2013

Conclusion IV

→ For a conclusive environmental assessment for algae based biorefineries a combination is necessary: LCA plus LC-EIA

Agenda

- PUFAChain: an overview
- LCA: PUFAChain specific highlights
- LCA and LC-EIA in PUFAChain
- Quo vadis: sustainability assessment
 - Conclusions and recommendations

Sustainability

Definition

"Meeting the needs of the present generation without compromising the ability of future generations to meet their needs."

Brundtland Commission 1987

The principle of sustainability

Sustainability

Sustainability

Not sufficient: e.g. technological, legal and political issues are not addressed sufficiently.

Life Cycle Assessment (LCA) Social Life Cycle Assessment Environmental Life Cycle Costing (sLCA) (eLCC)

WP9: Sustainability in PUFAChain

Conclusion V and VI

- → For a conclusive sustainability assessment of algae based products, all pillars of sustainability should be investigated including technological, environmental, economic, social, political, and legal aspects.
- For this, an appropriate mix of existing and specific assessment tools may be used to address the goal and scope questions best.

LCA

sLCA

eLCC

Others

Agenda

- PUFAChain: an overview
- LCA: PUFAChain specific highlights
- LCA and LC-EIA in PUFAChain
- Quo vadis: sustainability assessment
- Conclusions and recommendations

Conclusions

→ For the sustainability assessment of algae based products, the complete life cycle comparisons should be investigated by consideration of the full basket of commodities ("system expansion" instead of "allocation").

Conclusions

Not all bio-products from algae such as bioenergy, bio-chemicals or bio-nutrients are associated with environmental benefits − just because they are "bio".

There is a high potential – far above average – for algae based products being environmental friendly.

For their identification and optimization, the simultaneous application of both, LCA and LC-EIA, are appropriate.

Recommendations

- → For a conclusive sustainability assessment of algae based products, all pillars of sustainability should be investigated including technological, environmental, economic, social, political, and legal aspects.
- For this, an appropriate mix of existing and specific assessment tools may be used to address the goal and scope questions best.

LCA

sLCA

eLCC

Others

LC-EIA and integrated sustainability assessment

Interested?

Dr Guido Reinhardt **Contact:**

Tel: +49 6221 4767-0 (-31)

E-mail: guido.reinhardt@ifeu.de

www.ifeu.de **Downloads:**

PUFAChain contact details

Coordinator Thomas Friedl

tel: +49 551 39-7868

E-mail: tfriedl@uni-goettingen.de

Scientific Michael Stehr

tel: +49 2302 925-322

E-mail: michael.stehr@cremer.de

Administrative Christian Schoepper

Tel: +49 551 39-13263

E-mail: christian.schoepper@zvw.uni-goettingen.de

Stefan Durm

Tel: +49 7961 9256-229

E-mail: stefan.durm@euraconsult.de

Sustainability Dr Guido Reinhardt

assessment Tel: +49 6221 4767-0 (-31)

E-mail: guido.reinhardt@ifeu.de

Homepage www.pufachain.eu

Acknowledgements

We gratefully thank the following authors for their photographs:

- © Ziegler175 / Wikimedia Commons
- © Erik Christensen / Wikimedia Commons
- © Shizhao / Wikimedia Commons
- © Alexander Altmann / pixelio
- © Brigitte Hiss / BMU
- © Ruth Rudolph / pixelio
- © Dieter B. / pixelio
- © 4028mdk09 / Wikimedia Commons
- © Robert Brenner / pixelio

